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Abstract: We demonstrate five-dimensional anti-de Sitter black hole emerges as dual

geometry holographic to weakly interacting N = 4 superconformal Yang-Mills theory. We

first note that an ideal probe of the dual geometry is the Yang-Mills instanton, probing

point by point in spacetime. We then study instanton moduli space at finite temperature

by adopting Hitchin’s proposal that geometry of the moduli space is definable by Fisher-

Rao ”information geometry”. In Yang-Mills theory, the information metric is measured by

a novel class of gauge-invariant, nonlocal operators in the instanton sector. We show that

the moduli space metric exhibits (1) asymptotically anti-de Sitter, (2) horizon at radial

distance set by the Yang-Mills temperature, and (3) after Wick rotation of the moduli space

to the Lorentzian signature, a singularity at the origin. We argue that the dual geometry

emerges even for rank of gauge groups of order unity and for weak ‘t Hooft coupling.
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1. Background

Maldacena’s gauge-gravity correspondence [1] refers to the remarkable relation between

4-dimensional conformal gauge theory and 5-dimensional string theory on anti-de Sitter

space. The gauge theory is characterized by gauge group SU(N) and ‘t Hooft coupling

λ2 = g2
YMN , while string theory is characterized by coupling gst and curvature scale (in

string scale unit) R of the 5-dimensional anti-de Sitter space, whose metric in Poincaré

coordinates is given by

ds2
0 = R2

(

1

u2

[

−dt2 + dx2
]

+
du2

u2

)

. (1.1)

The correspondence is valid in the limit the string theory is weakly coupled and anti-de

Sitter space is nearly flat, and identifies coupling parameters on each side as

N ∼ 1

gst
À 1 and λ2 ∼ R4 À 1. (1.2)

The correspondence is a new kind of strong-weak coupling duality, and has been established

firmly in the limit of (1.2).

Maldacena’s correspondence is extendible to Yang-Mills theory at finite temperature.

The dual string theory is then defined on Schwarzschild black hole in 5-dimensional anti-de

Sitter space:

ds2
T = R2

[

− 1

u2

(

1 − u4

u4
o

)

dt2 +

(

1 − u4

u4
o

)−1
du2

u2
+

1

u2
dx2

]

, (1.3)

whose surface gravity at the horizon u = u0 set by the Yang-Mills temperature T . The

Maldacena’s correspondence, as is formulated, is valid for large N and strong ‘t Hooft

coupling, see (2). On the other hand, enormous insight on gauge and string theories would

be gained by understanding other regime of the coupling parameters. So, we consider

taking extreme opposite regime

N ∼ O(1) and λ ¿ 1, (1.4)
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and pose the following questions. Despite being in the regime of strongly interacting

string theory, can a black hole geometry (3) or close to it be reconstructed out of weakly

interacting Yang-Mills gas? Can we explore interior of the horizon and see if the black

hole singularity resolved by strong stringy and quantum effects? If resolved, what are

universal features of the resolved geometry? Undoubtedly, affirmative answers to these

questions would yield far reaching consequences to our ultimate understanding on gauge

theory, quantum gravity, string theory, black hole, and (spacelike) singularity.

These questions are interesting, but one may subscribe a certain doubt because eq. (1.4)

lies outside the validity range of Maldacena’s correspondence. On the other hand, there are

physical quantities whose behavior seems to support smooth interpolation between weak

and strong coupling regimes. Take the thermodynamic free energy density F(N,λ) of hot

Yang-Mills gas. At large N but at arbitrary λ, the free energy density behaves as F(N,T ) =

h(λ)
(

−1
6π2N2T 4

)

. At strong ‘t Hooft coupling regime, λ À 1, the leading-order correction

was computed from string worldsheet corrections to the Type IIB supergravity and hence

to the black hole geometry. It shows that h(λ) increases monotonically from 3/4 as λ is

decreased [2]. At weak ‘t Hooft coupling regime, λ ¿ 1, the leading-order corrections was

computed up to two loop by thermal perturbation theory for Yang-Mills theory, taking into

account of bubble resummation and electric screening thereof. With Padé approximation,

it was shown that h(λ) decreases monotonically from 1 as λ is increased [3].

In this work, we shall study N = 4 super Yang-Mills theory at finite temperature at

weak coupling and look for a signature, if any, of holography [4] and of emergent black

hole geometry. A moment of thought indicates that perturbative gluon dynamics at weak

coupling is an unlikely setup to discover such geometry, and, by S-duality, semiclassical

solitons (such as instantons or monopoles) at strong coupling limit is likewise an unlikely

setup. We will therefore focus on instantons in weak coupling limit, where semiclassical

treatment is well justified. Morally speaking, this is S-dual to gluon dynamics at strong

coupling limit — the situation where Maldacena’s correspondence was extensively con-

firmed. Moreover, instanton in Yang-Mills theory is the counterpart of D-instanton in

Type IIB string theory on 5d anti-de Sitter space. The D-instanton is an ideal probe since

it has sub-string scale size at weak coupling and it probes the spacetime point by point.

Built upon a prescription by Hitchin [5], we will show that a kind of black hole geometry

in asymptotic anti-de Sitter background emerges as the ”information geometry” [6, 7] for

the moduli space of Yang-Mills instanton at finite temperature.

2. Theoretical procedure

The Yang-Mills instanton for gauge group G =SU(2) is a self-dual configuration of the field

strength F a
mn: F a

mn = 1
2εmn

pqF a
pq. For a single instanton, the Yang-Mills field strength and

Lagrangian is given by

F a
mn = −ηa

mn

ρ2

[(x − a)2 + ρ2]2
, and LYM ≡ 1

2
TrF 2

mn =
ρ4

[(x − a)2 + ρ2]4
. (2.1)
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Notice that LYM is a function of both four-dimensional coordinates xm on R4 and five-

dimensional coordinates ZA ≡ (am, ρ) (which parametrize center and size of the instanton)

on the instanton moduli space M whose topology is R4 × R+.

The geometry of M is definable by an appropriate choice of the metric. A familiar

choice, studied extensively, is the ‘L2-metric’ GL2

AB :=
∫

R4
gmn(x) (∂AAm∂BAn)(x;Z). It

yields, for the base manifold R4, ds2(GL2

) = dρ2 + da2 = dZ2. As pointed out in [5], the

L2-metric is not convenient for studying differential geometry of the moduli space M, since

the metric does not display the underlying conformal invariance and the moduli space is

geometrically incomplete as the small instanton singularity ρ = 0 is at a finite distance

from a generic point on M. Also, the metric depends sensitively on topology and choice

of the metric on the base manifold B, and for G =SU(N), one instanton moduli space

is 4N-dimensional, depending on the rigid SU(N) gauge transformations. In the context

of Maldacena’s gauge-gravity correspondence, it is worthwhile to recall that the ADHM

instanton for N = 4 super Yang-Mills theory [8] yielded AdS5 × S5 after integrating out

the zero-modes for U(N) global gauge rotations by the large N saddle point approximation.

As a result, the computation was reduced entirely to G =SU(2) instanton calculus.

To keep the underlying symmetry manifest and better aid differential geometric prop-

erties, Hitchin [5] proposed an alternative definition of the moduli space geometry. For the

set of instantons with a fixed instanton number Q, the Lagrangian density LYM may be

considered as a probability distribution functions:
∫

R4 LYM = Q. Hitchin then proposes to

utilize so-called Fisher-Rao’s information metric to describe the geometry of the instanton

moduli space M. Extending his prescription, we propose the information metric in gauge

theory in terms of quantum average of nonlocal, gauge invariant operator:

Ginfo
AB (Z) ≡

∫

R4

〈LYM (∂A logLYM)(∂B logLYM)〉. (2.2)

Here, the bracket abbreviates normalized functional integral over the gauge field configura-

tions (whose definition involves the standard L2-metric for the functional integral measure).

At leading order in weak coupling regime, one simply evaluates (2.2) for the instanton so-

lution, obtaining Hitchin’s original prescription.

The information metric (2.2) probes variation of the instanton density over the moduli

space M. Indeed, from (2.1), information metric of the unit charge, SU(2) Yang-Mills

instanton is readily extracted as

ds2(Ginfo) = c
dρ2 + da2

ρ2
. (2.3)

So, identifying ρ, am with u, xm in (2), we constructed 5-dimensional Euclidean anti-de

Sitter space H5 as the emergent geometry of weakly coupled Yang-Mills theory. Notice that

the information metric (2.3) exhibits underlying conformal invariance manifestly, geodesic

completeness (small instanton singularity is at infinite distance from a generic point in the

interior), and invariance under the global gauge rotation.

The above result may be interpreted as follows. In Maldacena’s gauge-gravity corre-

spondence, classical equation of motion of dilaton Φ, as derived by the variation of the
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supergravity effective action Wsugra, is sourced by the Lagrangian density of the N = 4

super Yang-Mills theory [9, 10]. Thus, for an instanton configuration of a fixed topological

charge,

(

δWsugra

δΦ

)

D−instanton

=
1

g2
YM

〈L〉instanton. (2.4)

As seen above, the right-hand side depends not only on the coordinates of the base manifold

B = R4 but also on the coordinates on M. Therefore, the Lagrangian density for the

instanton, equivalently, topological charge density is interpretable as the bulk-to-boundary

propagator for a massless spin-0 field. In fact, one can show that

¤H5
LYM(x,Z) = 0 and limρ→0LYM(x,Z) = δ(4)(x − x0),

both of which are precisely the defining equations for the bulk-boundary propagators in

AdS space. One can further construct bulk-boundary propagators for massive spin-0 fields

with m2 = ∆(∆ − 4) by raising power of the instanton charge density LYM:

¤H5

(

LYM(x,Z)
)∆/4

= ∆(∆ − 4)
(

LYM(x,Z)
)∆/4

. (2.5)

The rate of variation of the instanton density over the moduli space M is measurable by

the logarithmic derivative vA(x;Z) ≡ ∂A logLYM(x : Z). By explicit computation [11],

one can show that these logarithmic vector fields obey the ‘Hamilton-Jacobi’ equation

||v||2info ≡ GAB
infovAvB = 1 for every point xm on the base manifold B = R

4. Therefore, vA

may be interpreted as the velocity field, and Ginfo
AB a viable metric defining the geodesic

flows on the moduli space M.

Salient features of the information metric are [11]

• Information metric GAB is Einstein. Furthermore, perturbation of information metric

GAB is the bulk-boundary propagator for ‘graviton’.

• The instanton charge density LYM is the bulk-boundary propagator for massless scalar

fields. This relation holds also for perturbation of LYM.

• The geodesic distance, once properly regularized, between the boundary point xm of the

base manifold B = R
4 and the bulk point ZA is given by log L(x : Z).

We shall now study the information geometry of instanton moduli space for Yang-Mills

theory at finite temperature T . In the Matsubara formulation, the Euclidean time direction

is topologically S
1 with periodicity β = 2π/T . In general, the self-dual Yang-Mills potential

Aµ(x, t) on R
3 × S

1 obeys the quasi-periodicity condition: Aµ(x, t + β) = ω−1Aµ(x, t)ω

where ω is an element of the SU(2) gauge group. By making the large gauge transformation

Aµ(x, t) → AΩ
µ (x, t) = Aµ(x, t) + iΩ(x, t)∂µΩ−1(x, t),Ω = ωt/β , we can bring the gauge

potential strictly periodic. Semiclassically, only those gauge field configurations with the

same gauge orientation at infinity contribute to the functional integral. Such periodic

instantons, also known as calorons [12], can be found from multi-instanton solution of ‘t

Hooft type, in which gauge orientation of constituent instantons is identical. We arrange

the constituent instantons on the same spatial location, same size, but arrayed along the

temporal direction with separation β. Summing over the infinite constituent instantons,
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the caloron solution is given by Aa
m = −ηa

mn∂n log Π(x : Z) where the prepotential Π is

given by

Π(x : Z) = 1 +
ρ2T 2

rT

sinh rT

2(cosh rT − cos tT )
(2.6)

on base manifold B = R3 × S1. For later convenience, we also abbreviated x = (x, t)

and Z = (ρ,a, ao) and denoted r ≡ |x − a|, t = (t − a0). Notice that the instanton size

moduli ρ refers to that of the constituents, viz. of the zero temperature instantons. The

temperature T is related to the Euclidean time periodicity β as β = 2π/T . The prepotential

Π is manifestly nonsingular, since the denominator never vanishes, except the measure-zero

configuration at the instanton center. In this case, even though the prepotential diverges,

integration over R4 renders it finite.

Anatomy of the caloron and its physical implications were studied thoroughly [13].

At large distance, |x| À β, the prepotential is expandable as Π(x : Z) ∼ 1 + ρ2T/2r +

O(e−rT/2π), so the temporal and the spatial components of the gauge potential become

Aa
0 ∼ −xa

r2

(

1 +
2r

ρ2T

)−1

+ · · · and Aa
i ∼ εa

ij

xj

r2

(

1 +
2r

ρ2T

)−1

+ · · · . (2.7)

It then follows that the color electric and magnetic fields decay as r−1, and hence exhibit

characteristics of magnetic monopoles. Indeed, magnetic monopole is interpretable as an

infinite array of Yang-Mills instantons along the Euclidean time direction.

At short distance, |x| ¿ β, the prepotential is expandable as Π(x : Z) ∼ (1 +

ρ2T 2/12) + ρ2/|x|2 + ρ2O(|x|2/β). Consequently, the gauge potential asymptotes to

Aa
m ∼ ηa

mn

ρ2
T

|x|2
xn

(|x|2 + ρ2
T )

+ · · · (2.8)

where ρT is related to ρ as

1

ρ2
T

=
1

ρ2
+

T 2

12
. (2.9)

Notice that the gauge potential takes precisely the same form as the zero temperature Yang-

Mills instanton except the crucial difference that the size moduli ought to be identified with

ρT , not ρ itself. It is important to recall that the asymptotic expansion is valid for any

value of ρ. It then follows that, as interpreted in terms of zero temperature Yang-Mills

instanton, the caloron size moduli is limited over the range:

0 ≤ ρ ≤ ∞ −→ 0 ≤ ρT ≤ 2
√

3

T
. (2.10)

The fact that the asymptotic caloron behaves as the zero temperature instanton implies

that the caloron ought to exhibit conformal symmetry asymptotically near ρT ∼ 0. Beyond

the leading semiclassical approximation, generically there will be corrections arising from

logarithmically running coupling constants. For conformally invariant N = 4 Yang-Mills

theory, such effects are absent, rendering the conformal symmetry at ρT ∼ 0 exact.
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The result, eq. (2.10) is elementary but leads to remarkable consequences. We expect

that, as measured in scales of the zero temperature instanton, the caloron size does not grow

forever (which was so at zero temperature) as ρ → ∞. Rather, caloron size saturates at a

finite size set by the temperature T . It suggests us to interpret the maximum caloron size

as the emergent horizon of the black hole in the background of the information geometry

space H5 in (2.3).

3. Analysis and results

Having understood the caloron configuration, we would like to understand the geometry of

caloron’s moduli space. As for the zero temperature instantons, we shall adopt Fisher-Rao’s

information metric (2.2) as the definition of the geometry. In terms of the prepotential Π(x :

Z), the caloron action density is expressible by LYM = 1
2¤R4

(∂m log Π)2 = −¤
2
R4

log Π.

We anticipate the information metric for the caloron of fixed topological charge takes the

form

ds2
caloron = Gtt[u]dt2 + Guu[u]du2 + Gii[u]dx2. (3.1)

Here, u = u(ρ) refers to a functional relation between the size moduli ρ and the holo-

graphic coordinate u to be determined. By translational symmetry along R
3 and along

S
1, the metric components are functions of ρ only. Analytic computations of these met-

ric component were not available, so we extracted them from numerical computation on

MATHEMATICA.

We propose to fix function u(ρ) by comparing the information geometry with the

Euclidean anti-de Sitter Schwarzschild black hole. In terms of Poincaré coordinates, the

metric is given by

ds2 =
1

u2

(

1 − u4

u4
0

)

dt2 +

(

1 − u4

u4
0

)−1
du2

u2
+

1

u2
dx2. (3.2)

The background has a topology of R2 × R3, the latter subspace referring to the horizon.

In Euclidean signature, the geometry is complete for u ≥ u0, and the regularity of the R2

part at u = u0 relates the temperature and the mass of the black hole. In this Poincaré

parametrization, the coordinate u is the radial coordinate and ranges over u0 ≤ u < ∞
for Euclidean signature (compared to the range 0 ≤ u < ∞ for Lorentzian signature). At

strong ‘t Hooft coupling regime, leading corrections were computed in [2], and indicated

that the horizon and the singularity at u = 0 persist.

• Gij :

We begin with the metric component Gij , since, according to eq. (3.2), we expect that

this metric component is not deformed by the Schwarzschild harmonic function, viz. takes

the same functional form 1/ρ2 as the Euclidean anti-de Sitter space H5. In the previous

section, we noted from asymptotic behavior that the caloron behaves the same as zero

temperature Yang-Mills instanton for small size ρ ∼ 0, but is gradually deformed for larger

size. We anticipated that, when measured in terms of zero temperature instanton size

– 6 –
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Figure 1: Log-log plot of the information metric Gij as a function of ρ. The numerical data points

are cross-marked. The Yang-Mills gas temperature is set to T = 1. Across ρ = 1/T , the metric

component Gij behaves very differently.

variable ρT in (2.9), the instanton size is bounded above at a finite size set by the Yang-

Mills temperature T . Certainly, this is not the behavior one finds from the L2-metric

and ADHM calculus. So, we compared the relation (2.9) with the information metric

component Gij . Our computation yields

Gij [ρ] = 506

(

1

ρ2
+ 0.119

)

δij . (3.3)

Remarkably, the result displays the same feature as (2.9): Gij approaches to a constant

value as ρ → ∞! Thus, we propose to set the functional relation u(ρ) as

1

u2
:=

(

1

ρ2
+

1

u2
o

)

where
1

u2
o

∼ 0.119T 2, (3.4)

and identify u, not ρ, with the radial variable in the metric (3.2). Stated differently, (3.4)

defines the map between Yang-Mills theory scale (instanton size) and the emergent geom-

etry scale (holographic distance). We thus have

Gij [u] = 506
δij

u2
. (3.5)

Since the radial variable u extends only up to uo, we identify uo ∼ 2.9/T as the ”horizon”.

Notice that this agrees well with 2
√

3/T in (2.10). Accordingly, we interpret the Yang-Mills

gas temperature T as the Hawking temperature.

• Guu:

Next, consider the metric component Guu[u]. From the anti-de Sitter Schwarzschild metric,

– 7 –
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Figure 2: Log-log plot of the information metric Gρρ. At ρ ¿ 1/T , it scales as 1/ρ2. At ρ À 1/T ,

it scales as 1/ρ4.

we anticipate that Guu diverges at the ”horizon” u0. From Yang-Mills theory side, we will

first compute the metric component Gρρ and then change the variable according to (3.4),

convert it to Guu[u] = Gρρ(ρ)
(

dρ
du

)2
. Numerically, we obtained that Gρρ interpolates

between ρ−2 and ρ−4 behaviors as ρ ranges from 0 to ∞:

Gρρ(ρ) = 502

(

1

ρ2 + 0.91 ρ4

)

. (3.6)

The result is plotted in figure 2.

Changing the variables to u, we find that

Guu[u] = 502
1

u2

(

1 − u4

u4
0

)−1
R(u) where R(u) ∼ 1 + u2/u2

0

1 + 6.70u2/u2
0

. (3.7)

Remarkably, the metric has a simple pole at u = u0, which is precisely the location of the

”horizon”. Notice that the location of the pole originates from the change of the variables,

explaining why it is invariably the same as the location of the horizon. Compared to the

metric (3.2), we thus see that the metric component is now modified by the function R(u).

Since these two results are totally opposite regime of the coupling parameters, we conclude

that R(u) summarizes strong worldsheet and string coupling effects.

• Gtt:

Lastly, we extract Gtt component of the information metric. From the anti-de Sitter

Schwarzschild black hole metric, we expect this component exhibits a single zero at the

horizon. From numerical computation, we have found that the best fit is given by

Gtt(ρ) = 507

(

1

ρ2 + 0.037ρ4

)

. (3.8)
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Figure 3: Log-log plot of the information metric Gtt. At ρ ¿ 1/T , it scales as 1/ρ2. At ρ À 1/T , it

scales as 1/ρ4. It behaves similar to Gρρ, but the numerical coefficients for each slope are different.

Again, changing the ρ variable into u via (3.4), we get

Gtt[u] ∼ 507
1

u2

(

1 − u4

u4
o

)

T (u) where T (u) =
1 − u2/u2

o

1 − 0.69u2/u2
o

(

1 +
u2

u2
0

)−1

.(3.9)

We see that the metric vanishes at the ”horizon”, u → u0! The metric actually exhibits

double zero at the horizon. It would be interesting to see if the double zero resolves

into a single zero once numerical accuracy and fitting function with higher precision are

performed, but we relegate the study for future work. It also exhibits a simple pole, but it

is hidden inside the horizon.

Summarizing, the Euclidean metric of the instanton moduli space takes the form

ds2 ∼ 500

[

1

u2

(

1 − u4

u4
0

)

T (u)dt2 +

(

1 − u4

u4
0

)−1

R(u)
du2

u2
+

1

u2
dx2

]

, (3.10)

where T (u), R(u) given in (3.8) and (3.7) represent effects due to string worldsheet and

quantum corrections.

Lorentzian black hole geometry is obtainable by Wick rotating the Euclidean met-

ric (3.10). The Wick rotation is a well-defined notion in gauge theory, and this must be

hold as well for the instanton moduli space. It then follows that the Lorentzian black

hole clearly exhibits u = ∞ singularity as in the case for the Schwarzschild black hole.

We believe these features bear important implications to exploring inside the black hole

via Maldacena’s AdS/CFT [14]. In our numerical computation, there appears other poles

and zeros in the metric components, all located at finite u and inside the horizon. How-

ever, further precision study is imperative before drawing physical significance of them.
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Any extra structures present to the moduli space geometry bear significant implications to

our understanding of string theory since they represent effects arising from unsuppressed

stringy and quantum fluctuations. Another interesting direction is to reconstruct the min-

imal surface of Wilson loop [15]-[19] directly from weakly coupled gauge theory. We leave

them for future study.
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